State Selection and Cost Estimation for Deep Reinforcement Learning-Based Real-Time Control of Urban Drainage System
نویسندگان
چکیده
In recent years, a real-time control method based on deep reinforcement learning (DRL) has been developed for urban combined sewer overflow (CSO) and flooding mitigation is more advantageous than traditional methods in the context of drainage systems (UDSs). Since current studies mainly focus analyzing feasibility DRL comparing them with methods, there still need to optimize design cost methods. this study, state selection estimation are employed analyze influence different states performance provide relevant suggestions practical applications. A real-world UDS used as an example develop models states. Their effect data monitoring costs then compared. According results, training process difficult when using fewer nodes information or water level input state. Using both upstream downstream improves DRL. Also, effective nodes; flow likely have better level, while cannot significantly further improve effect. Because higher monitoring, number use flow/water be balanced cost-effectiveness.
منابع مشابه
Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملDeep Reinforcement Learning for Sponsored Search Real-time Bidding
Bidding optimization is one of the most critical problems in online advertising. Sponsored search (SS) auction, due to the randomness of user query behavior and platform nature, usually adopts keyword-level bidding strategies. In contrast, the display advertising (DA), as a relatively simpler scenario for auction, has taken advantage of real-time bidding (RTB) to boost the performance for adver...
متن کاملReinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملTowards Vision-Based Deep Reinforcement Learning for Robotic Motion Control
This paper introduces a machine learning based system for controlling a robotic manipulator with visual perception only. The capability to autonomously learn robot controllers solely from raw-pixel images and without any prior knowledge of configuration is shown for the first time. We build upon the success of recent deep reinforcement learning and develop a system for learning target reaching ...
متن کاملBenchmarking Deep Reinforcement Learning for Continuous Control
Recently, researchers have made significant progress combining the advances in deep learning for learning feature representations with reinforcement learning. Some notable examples include training agents to play Atari games based on raw pixel data and to acquire advanced manipulation skills using raw sensory inputs. However, it has been difficult to quantify progress in the domain of continuou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water
سال: 2023
ISSN: ['2073-4441']
DOI: https://doi.org/10.3390/w15081528